2,502 research outputs found

    The ethical challenge of Touraine's 'living together'

    Get PDF
    In Can We Live Together? Alain Touraine combines a consummate analysis of crucial social tensions in contemporary societies with a strong normative appeal for a new emancipatory 'Subject' capable of overcoming the twin threats of atomisation or authoritarianism. He calls for a move from 'politics to ethics' and then from ethics back to politics to enable the new Subject to make a reality out of the goals of democracy and solidarity. However, he has little to say about the nature of such an ethics. This article argues that this lacuna could usefully be filled by adopting a form of radical humanism found in the work of Erich Fromm. It defies convention in the social sciences by operating from an explicit view of the 'is' and the 'ought' of common human nature, specifying reason, love and productive work as the qualities to be realised if we are to move closer to human solidarity. Although there remain significant philosophical and political differences between the two positions, particularly on the role to be played by 'the nation', their juxtaposition opens new lines of inquiry in the field of cosmopolitan ethics

    F-GAMMA: On the phenomenological classification of continuum radio spectra variability patterns of Fermi blazars

    Full text link
    The F-GAMMA program is a coordinated effort to investigate the physics of Active Galactic Nuclei (AGNs) via multi-frequency monitoring of Fermi blazars. In the current study we show and discuss the evolution of broad-band radio spectra, which are measured at ten frequencies between 2.64 and 142 GHz using the Effelsberg 100-m and the IRAM 30-m telescopes. It is shown that any of the 78 sources studied can be classified in terms of their variability characteristics in merely 5 types of variability. It is argued that these can be attributed to only two classes of variability mechanisms. The first four types are dominated by spectral evolution and can be described by a simple two-component system composed of: (a) a steep quiescent spectral component from a large scale jet and (b) a time evolving flare component following the "Shock-in-Jet" evolutionary path. The fifth type is characterised by an achromatic change of the broad band spectrum, which could be attributed to a different mechanism, likely involving differential Doppler boosting caused by geometrical effects. Here we present the classification, the assumed physical scenario and the results of calculations that have been performed for the spectral evolution of flares.Comment: Proceedings of the conference: "The Central Kiloparsec in Galactic Nucleic: Astronomy at High Angular Resolution 2011", August 29 - September 2, 2011, Bad Honnef, German

    On the phenomenological classification of continuum radio spectra variability patterns of Fermi blazars

    Full text link
    The F-GAMMA program is a coordinated effort to investigate the physics of Active Galactic Nuclei (AGNs) via multi-frequency monitoring of {\em Fermi} blazars. The current study is concerned with the broad-band radio spectra composed of measurement at ten frequencies between 2.64 and 142 GHz. It is shown that any of the 78 sources studied can be classified in terms of their variability characteristics in merely 5 types of variability. The first four types are dominated by spectral evolution and can be reproduced by a simple two-component system made of the quiescent spectrum of a large scale jet populated with a flaring event evolving according to Marscher & Gear (1985). The last type is characterized by an achromatic change of the broad-band spectrum which must be attributed to a completely different mechanism. Here are presented, the classification, the assumed physical system and the results of simulations that have been conducted.Comment: 2011 Fermi Symposium proceedings - eConf C11050

    State-of-the-art energetic and morphological modelling of the launching site of the M87 jet

    Get PDF
    M87 has been the target of numerous astronomical observations across the electromagnetic spectrum, and very long baseline interferometry has resolved an edge-brightened jet1,2,3,4. However, the origin and formation of its jets remain unclear. In our current understanding, black holes (BH) are the driving engine of jet formation5, and indeed the recent Event Horizon Telescope observations revealed a ring-like structure in agreement with theoretical models of accretion onto a rotating Kerr BH6. In addition to the spin of the BH being a potential source of energy for the launching mechanism, magnetic fields are believed to play a key role in the formation of relativistic jets7,8. A priori, the spin, a⋆, of the BH in M87⋆ is unknown; however, when accounting for the estimates of the X-ray luminosity and jet power, values of |a_{*}| ≳ 0.5 appear favoured6. Besides the properties of the accretion flow and the BH spin, the radiation microphysics including the particle distribution (thermal6 and non-thermal^{9,10}) as well as the particle acceleration mechanism11 play a crucial role. We show that general relativistic magnetohydrodynamic simulations and general relativistic radiative transfer calculations can reproduce the broadband spectrum from the radio to the near-infrared regime and simultaneously match the observed collimation profile of M87, thus allowing us to set rough constraints on the dimensionless spin of M87* to be 0.5 ≲ a⋆ ≲ 1.0, with higher spins being possibly favoured

    The concept of solidarity: emerging from the theoretical shadows?

    Get PDF
    The concept of solidarity has been relatively neglected by social scientists since Durkheim's pioneering work in the late 19th century. The discipline of politics has been guilty of overlooking this 'subjective' element of community life, but recent works by Stjernø and Brunkhorst reflect a growing awareness of the theoretical significance of the concept. Whereas early liberal attempts to theorise solidarity took the nation state to be the appropriate community for its realisation, the emergence of globalisation raises the possibility of human solidarity developing in the global community. Traditional forms of solidarity have been dissipated by the social changes accompanying globalisation, but they were often locked into the defence of particular interests. New forms may be emerging to rekindle the broader vision of human solidarity. Recent work by writers such as Habermas, Honneth, Rorty and Touraine focuses on widening and deepening democratic participation and/or the articulation of our ethical obligations in various ways. It is argued here that these perspectives need to be supplemented by a radical humanist approach grounded in a normative theory of human self-realisation

    Accounting students' expectations and transition experiences of supervised work experience

    Get PDF
    Political and economic discourses position employability as a responsibility of higher education, which utilise mechanisms such as supervised work experience (SWE) to embed employability into the undergraduate curriculum. However, sparse investigation of students' contextualised experiences of SWE results in little being known about the mechanisms through which students derive employability benefits from SWE. The aim of this study is to examine the impact of students' expectation and conception of workplace learning on their transition into SWE. Analysis of accounting students' experiences reveal two broad conceptions of workplace learning, the differing impacts of which on transition experience are explored using existing learning transfer perspectives. Students displaying the more common 'technical' conception construct SWE as an opportunity to develop technical, knowledge-based expertise and abilities that prioritize product-based or cognitive learning transfer. Students with an 'experiential' conception were found to construct SWE primarily as an experience through which the development of personal skills and abilities beyond technical expertise are prioritized using process-based or socio-cultural learning transfer. Further data analysis suggests that these two learning transfer approaches have differing impacts on students' employability development which may indicate a need for universities to consider how to develop appropriate student expectations of and approaches to SWE and meaningful support for students' SWE transition

    Near-field optical power transmission of dipole nano-antennas

    Get PDF
    Nano-antennas in functional plasmonic applications require high near-field optical power transmission. In this study, a model is developed to compute the near-field optical power transmission in the vicinity of a nano-antenna. To increase the near-field optical power transmission from a nano-antenna, a tightly focused beam of light is utilized to illuminate a metallic nano-antenna. The modeling and simulation of these structures is performed using 3-D finite element method based full-wave solutions of Maxwell’s equations. Using the optical power transmission model, the interaction of a focused beam of light with plasmonic nanoantennas is investigated. In addition, the tightly focused beam of light is passed through a band-pass filter to identify the effect of various regions of the angular spectrum to the near-field radiation of a dipole nano-antenna. An extensive parametric study is performed to quantify the effects of various parameters on the transmission efficiency of dipole nano-antennas, including length, thickness, width, and the composition of the antenna, as well as the wavelength and half-beam angle of incident light. An optimal dipole nanoantenna geometry is identified based on the parameter studies in this work. In addition, the results of this study show the interaction of the optimized dipole nano-antenna with a magnetic recording medium when it is illuminated with a focused beam of light
    corecore